Skip to main content
Log in

Electrokinetic and aspect ratio effects on secondary flow of viscoelastic fluids in rectangular microchannels

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The secondary flow of PTT fluids in rectangular cross-sectional plane of microchannels under combined effects of electroosmotic and pressure driving forces is the subject of the present study. Employing second-order central finite difference method in a very refined grid network, we investigate the effect of electrokinetic and geometric parameters on the pattern, strength and the average of the secondary flow. In this regard, we try to illustrate the deformations of recirculating vortices due to change in the dimensionless Debye–Hückel and zeta potential parameters as well as channel aspect ratio. We demonstrate that, in the presence of thick electric double layers, significant alteration occurs in the secondary flow pattern by transition from favorable to adverse pressure gradients. Moreover, it is found that for polymer-electrolyte solutions with large Debye lengths, the secondary flow pattern and the shape of vortices are generally dependent upon the width-to-height ratio of the channel cross section. Also, the inspections of strength and average of secondary flow reveal that the sensitivity of these quantities with respect to the electrokinetic, geometric and rheological parameters increases by increasing the absolute value of velocity scale ratio. In this regard, utilizing the curve fitting of the results, several empirical expressions are presented for the strength and average of the secondary flow under various parametric conditions. The obtained relations with the other predictions for secondary flow are of high practical importance when dealing with the design of microfluidic devices that manipulate viscoelastic fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

APG/FPG:

Adverse/favorable pressure gradient

C,F :

Coefficient functions

D :

Rate of deformation tensor (s−1)

e :

The charge of electron (C)

E z :

z-component of electric field (Vm−1)

El:

Elasticity number

EOF:

Electroosmotic flow

\(f\left( {\tau_{kk} } \right)\) :

PTT stress coefficient function

k B :

Boltzmann constant (\(1.3807 \times 10^{ - 23} JK^{ - 1}\))

\(L,2H,2W\) :

Microchannel length/height/width (m)

n 0 :

Ionic number concentration (m−3)

N 1 :

First normal stress difference

N 2 :

Second normal stress difference

p :

Pressure (Pa)

Re :

Reynolds number

t :

Time (s)

T m :

Average absolute temperature (K)

u :

Velocity vector (ms−1)

Wi:

Weissenberg number

x, y, z :

Transverse/depthwise/axial coordinate (m)

\({\mathbb{Z}}^{ \pm }\) :

Valence of ions

\(\alpha\) :

Channel aspect ratio

\(\varGamma\) :

Ratio of PD to HS velocities

\(\varepsilon\) :

Extensibility parameter

\(\epsilon\) :

Dielectric constant of the fluid (\({\rm CV}^{ - 1} {\rm m}^{ - 1}\))

\(\phi\)/\(\varPhi\) :

External/total electrical potential (\(V\))

\(\eta_{p}\) :

Polymer viscosity coefficient (Pa s)

\(\kappa\) :

Debye–Hückel parameter (m−1)

\(K\) :

Dimensionless Debye–Hückel parameter

\(\lambda\) :

Relaxation time (s)

\(\xi\) :

PTT model parameter

\(\rho_{e}\) :

Electric charge density (Cm−3)

\(\varvec{\tau},\tau_{kk}\) :

Polymeric/trace of extra stress tensor (Pa)

\(\tau_{xz} , \tau_{yz}\) :

Streamwise shear stresses (Pa)

\(\tau_{xx} ,\tau_{yy}\) :

Transverse normal stresses (Pa)

\(\tau_{xy}\) :

Transverse shear stress (Pa)

\(\tau_{zz}\) :

Streamwise normal stress (Pa)

\(\varphi\) :

Stream function (m2s−1)

\(\psi , \psi_{0}\) :

EDL/wall zeta potential (V)

\(\varOmega\) :

Vorticity function (s−1)

\(i, j, k\) :

Transverse/depthwise/axial direction

HS :

Helmholtz–Smoluchowski

\(P, NB\) :

Central node and neighbor grid point

PAA:

Polyacrylamide solution

PTT:

Phan-Thien–Tanner model

T:

Transpose of the matrix

\(^{ - }\) :

Relevant to dimensionless variable

\(^{\square }\) :

Gordon–Schowalter convected derivative

References

  • Afonso A, Alves M, Pinho F (2009) Analytical solution of mixed electro-osmotic/pressure driven flows of viscoelastic fluids in microchannels. J Non-Newtonian Fluid Mech 159:50–63

    Article  MATH  Google Scholar 

  • Afonso A, Alves M, Pinho F (2011) Electro-osmotic flow of viscoelastic fluids in microchannels under asymmetric zeta potentials. J Eng Math 71:15–30

    Article  MathSciNet  MATH  Google Scholar 

  • Afonso A, Ferrás L, Nóbrega J, Alves M, Pinho F (2014) Pressure-driven electrokinetic slip flows of viscoelastic fluids in hydrophobic microchannels. Microfluid Nanofluid 16:1131–1142

    Article  Google Scholar 

  • Alves MA, Pinho FT, Oliveira PJ (2001) Study of steady pipe and channel flows of a single-mode Phan-Thien–Tanner fluid. J Non-Newtonian Fluid Mech 101:55–76

    Article  MATH  Google Scholar 

  • Azaiez J, Guenette R, Ait-Kadi A (1996) Numerical simulation of viscoelastic flows through a planar contraction. J Non-Newtonian Fluid Mech 62:253–277

    Article  Google Scholar 

  • Babaie A, Sadeghi A, Saidi MH (2011) Combined electroosmotically and pressure driven flow of power-law fluids in a slit microchannel. J Non-Newtonian Fluid Mech 166:792–798

    Article  MATH  Google Scholar 

  • Babaie A, Saidi MH, Sadeghi A (2012) Electroosmotic flow of power-law fluids with temperature dependent properties. J Non-Newtonian Fluid Mech 185:49–57

    Article  Google Scholar 

  • Berli CL (2010) Output pressure and efficiency of electrokinetic pumping of non-Newtonian fluids. Microfluid Nanofluid 8:197–207

    Article  Google Scholar 

  • Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2008) Continuous particle separation in spiral microchannels using dean flows and differential migration. Lab Chip 8:1906–1914

    Article  Google Scholar 

  • Bilitewski U, Genrich M, Kadow S, Mersal G (2003) Biochemical analysis with microfluidic systems. Anal Bioanal Chem 377:556–569

    Article  Google Scholar 

  • Bodnár T, Sequeira A, Prosi M (2011) On the shear-thinning and viscoelastic effects of blood flow under various flow rates. Appl Math Comput 217:5055–5067

    MathSciNet  MATH  Google Scholar 

  • Brust M, Schaefer C, Doerr R, Pan L, Garcia M, Arratia P, Wagner C (2013) Rheology of human blood plasma: viscoelastic versus Newtonian behavior. Phys Rev Lett 110:078305

    Article  Google Scholar 

  • Chatterjee A (2011) Size-dependant separation of multiple particles in spiral microchannels. University of Cincinnati

  • Chow AW (2002) Lab-on-a-chip: opportunities for chemical engineering. AIChE J 48:1590–1595

    Article  Google Scholar 

  • Chung AJ, Gossett DR, Di Carlo D (2013) Three dimensional, sheathless, and high-throughput microparticle inertial focusing through geometry-induced secondary flows. Small 9:685–690

    Article  Google Scholar 

  • Cruz D, Pinho F, Oliveira P (2005) Analytical solutions for fully developed laminar flow of some viscoelastic liquids with a Newtonian solvent contribution. J Non-Newtonian Fluid Mech 132:28–35

    Article  MATH  Google Scholar 

  • D’Avino G, Romeo G, Villone MM, Greco F, Netti PA, Maffettone PL (2012) Single line particle focusing induced by viscoelasticity of the suspending liquid: theory, experiments and simulations to design a micropipe flow-focuser. Lab Chip 12:1638–1645

    Article  Google Scholar 

  • Debbaut B, Dooley J (1999) Secondary motions in straight and tapered channels: experiments and three-dimensional finite element simulation with a multimode differential viscoelastic model. J Rheol 43:1525–1545

    Article  Google Scholar 

  • Debbaut B, Avalosse T, Dooley J, Hughes K (1997) On the development of secondary motions in straight channels induced by the second normal stress difference: experiments and simulations. J Non-Newtonian Fluid Mech 69:255–271

    Article  Google Scholar 

  • Dhinakaran S, Afonso A, Alves M, Pinho F (2010) Steady viscoelastic fluid flow between parallel plates under electro-osmotic forces: Phan-Thien–Tanner model. J Colloid Interface Sci 344:513–520

    Article  Google Scholar 

  • Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci 104:18892–18897

    Article  Google Scholar 

  • Di Carlo D, Edd JF, Irimia D, Tompkins RG, Toner M (2008) Equilibrium separation and filtration of particles using differential inertial focusing. Anal Chem 80:2204–2211

    Article  Google Scholar 

  • Doddabasavana G, PadmaPriya K, Nagabhushana K (2012) A review of recent advances in separation and detection of whole blood components. World J Sci Technol 2:05–09

    Google Scholar 

  • Dutta P, Beskok A (2001) Analytical solution of combined electroosmotic/pressure driven flows in two-dimensional straight channels: finite Debye layer effects. Anal Chem 73:1979–1986

    Article  Google Scholar 

  • Figeys D, Pinto D (2000) Lab-on-a-chip: a revolution in biological and medical sciences. Anal Chem 72:330A–335A

    Article  Google Scholar 

  • Gervang B, Larsen P (1991) Secondary flows in straight ducts of rectangular cross section. J Non-Newtonian Fluid Mech 39:217–237

    Article  MATH  Google Scholar 

  • Ghosh U, Chakraborty S (2015) Electroosmosis of viscoelastic fluids over charge modulated surfaces in narrow confinements. Phys Fluids 27:062004

    Article  Google Scholar 

  • Hashemabadi S, Etemad SG (2006) Effect of rounded corners on the secondary flow of viscoelastic fluids through non-circular ducts. Int J Heat Mass Transfer 49:1986–1990

    Article  MATH  Google Scholar 

  • Haward SJ, Odell JA, Berry M, Hall T (2011) Extensional rheology of human saliva. Rheol Acta 50:869–879

    Article  Google Scholar 

  • Hoffmann KA (1989) Computational fluid dynamics for engineers. Engineering Education System, Austin, p 1989

    Google Scholar 

  • Horiuchi K, Dutta P (2006) Heat transfer characteristics of mixed electroosmotic and pressure driven micro-flows. JSME Int J B-Fluid T 49:812–819

    Article  Google Scholar 

  • Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304:987–990

    Article  Google Scholar 

  • Ireka I, Chinyoka T (2016) Analysis of shear banding phenomena in non-isothermal flow of fluids governed by the diffusive Johnson-Segalman model. Appl Math Model 40:3843–3859

    Article  MathSciNet  Google Scholar 

  • Jian Y-j, Liu Q-s, Yang L-g (2011) AC electroosmotic flow of generalized Maxwell fluids in a rectangular microchannel. J Non-Newtonian Fluid Mech 166:1304–1314

    Article  MATH  Google Scholar 

  • Kandlikar S, Garimella S, Li D, Colin S, King MR (2005) Heat transfer and fluid flow in minichannels and microchannels. Elsevier, Amsterdam

    Google Scholar 

  • Karniadakis G, Beskok A, Aluru NR (2006) Microflows and nanoflows: fundamentals and simulation, vol 29. Springer, Berlin

    MATH  Google Scholar 

  • Kolodner P (1998) Oscillatory convection in viscoelastic DNA suspensions. J Non-Newtonian Fluid Mech 75:167–192

    Article  MathSciNet  MATH  Google Scholar 

  • Li D (2004) Electrokinetics in microfluidics, vol 2. Academic Press, LOndon

    Book  Google Scholar 

  • Lim H, Nam J, Shin S (2014) Lateral migration of particles suspended in viscoelastic fluids in a microchannel flow. Microfluid Nanofluid 17:683–692

    Article  Google Scholar 

  • Maenaka H, Yamada M, Yasuda M, Seki M (2008) Continuous and size-dependent sorting of emulsion droplets using hydrodynamics in pinched microchannels. Langmuir 24:4405–4410

    Article  Google Scholar 

  • Mai-Duy N, Tanner R (2005) Computing non-Newtonian fluid flow with radial basis function networks. Int J Numer Meth Fluids 48:1309–1336

    Article  MATH  Google Scholar 

  • Maynes D, Webb B (2004) The effect of viscous dissipation in thermally fully-developed electro-osmotic heat transfer in microchannels. Int J Heat Mass Tran 47:987–999

    Article  Google Scholar 

  • Nam J, Lim H, Kim D, Jung H, Shin S (2012) Continuous separation of microparticles in a microfluidic channel via the elasto-inertial effect of non-Newtonian fluid. Lab Chip 12:1347–1354

    Article  Google Scholar 

  • Ng C-O (2013) Combined pressure-driven and electroosmotic flow of Casson fluid through a slit microchannel. J Non-Newtonian Fluid Mech 198:1–9

    Article  Google Scholar 

  • Oldroyd J (1958) Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids. Proc R Soc Lon Ser-A 245:278–297

    Article  MathSciNet  MATH  Google Scholar 

  • Oldroyd J (1965) Some steady flows of the general elastico-viscous liquid. In: Proceedings of the royal society of London A: mathematical, physical and engineering sciences, vol 1392. The Royal Society, London, pp 115–133

  • Oliveira P (2002) An exact solution for tube and slit flow of a FENE-P fluid. Acta Mech 158:157–167

    Article  MATH  Google Scholar 

  • Owens RG (2006) A new microstructure-based constitutive model for human blood. J Non-Newtonian Fluid Mech 140:57–70

    Article  MATH  Google Scholar 

  • Park H, Lee W (2008a) Effect of viscoelasticity on the flow pattern and the volumetric flow rate in electroosmotic flows through a microchannel. Lab Chip 8:1163–1170

    Article  Google Scholar 

  • Park H, Lee W (2008b) Helmholtz-Smoluchowski velocity for viscoelastic electroosmotic flows. J Colloid Interface Sci 317:631–636

    Article  Google Scholar 

  • Phan-Thien N (1978) A nonlinear network viscoelastic model. J Rheol 22:259–283

    Article  MATH  Google Scholar 

  • Poole R, Lindner A, Alves M (2013) Viscoelastic secondary flows in serpentine channels. J Non-Newtonian Fluid Mech 201:10–16

    Article  Google Scholar 

  • Ramachandran A, Leighton DT (2008) The influence of secondary flows induced by normal stress differences on the shear-induced migration of particles in concentrated suspensions. J Fluid Mech 603:207–243

    Article  MathSciNet  MATH  Google Scholar 

  • Sadeghi A, Amini Y, Saidi MH, Chakraborty S (2014) Numerical modeling of surface reaction kinetics in electrokinetically actuated microfluidic devices. Anal Chim Acta 838:64–75

    Article  Google Scholar 

  • Siline M, Leonov AI (2001) On flows of viscoelastic liquids in long channels and dies. Int J Eng Sci 39:415–437

    Article  Google Scholar 

  • Sousa J, Afonso A, Pinho F, Alves M (2011) Effect of the skimming layer on electro-osmotic—Poiseuille flows of viscoelastic fluids. Microfluid Nanofluid 10:107–122

    Article  Google Scholar 

  • Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977

    Article  Google Scholar 

  • Syrjälä S (1998) Laminar flow of viscoelastic fluids in rectangular ducts with heat transfer: a finite element analysis. Int Commun Heat Mass Transfer 25:191–204

    Article  Google Scholar 

  • Tanoue S, Naganawa T, Iemoto Y (2006) Quasi-three-dimensional simulation of viscoelastic flow through a straight channel with a square cross section. Nihon Reoroji Gakkaishi 34:105–113

    Article  Google Scholar 

  • Thien NP, Tanner RI (1977) A new constitutive equation derived from network theory. J Non-Newtonian Fluid Mech 2:353–365

    Article  MATH  Google Scholar 

  • Townsend P, Walters K, Waterhouse W (1976) Secondary flows in pipes of square cross-section and the measurement of the second normal stress difference. J Non-Newtonian Fluid Mech 1:107–123

    Article  MATH  Google Scholar 

  • Vakili MA, Sadeghi A, Saidi MH, Mozafari AA (2012) Electrokinetically driven fluidic transport of power-law fluids in rectangular microchannels. Colloids Surf A Physicochem Eng Aspects 414:440–456

    Article  Google Scholar 

  • Vakili MA, Sadeghi A, Saidi MH (2014) Pressure effects on electroosmotic flow of power-law fluids in rectangular microchannels. Theoret Comput Fluid Dyn 28:409–426

    Article  Google Scholar 

  • Vamerzani B, Norouzi M, Firoozabadi B (2014) Analytical solution for creeping motion of a viscoelastic drop falling through a Newtonian fluid Korea-Australia. Rheol J 26:91–104

    Google Scholar 

  • Villone M, D’Avino G, Hulsen M, Greco F, Maffettone P (2013) Particle motion in square channel flow of a viscoelastic liquid: migration vs. secondary flows. J Non-Newtonian Fluid Mech 195:1–8

    Article  MATH  Google Scholar 

  • Vissink A, Waterman H, Panders A, Vermey A (1984) Rheological properties of saliva substitutes containing mucin, carboxymethylcellulose or polyethylenoxide. J Oral Pathol Med 13:22–28

    Article  Google Scholar 

  • White FM, Corfield I (2006) Viscous fluid flow, vol 3. McGraw-Hill, New York

    Google Scholar 

  • Xue S-C, Phan-Thien N, Tanner R (1995) Numerical study of secondary flows of viscoelastic fluid in straight pipes by an implicit finite volume method. J Non-Newtonian Fluid Mech 59:191–213

    Article  Google Scholar 

  • Yang C, Li D (1997) Electrokinetic effects on pressure-driven liquid flows in rectangular microchannels. J Colloid Interface Sci 194:95–107

    Article  Google Scholar 

  • Yeleswarapu K, Kameneva M, Rajagopal K, Antaki J (1998) The flow of blood in tubes: theory and experiment. Mech Res Commun 25:257–262

    Article  MATH  Google Scholar 

  • Yoon DH, Ha JB, Bahk YK, Arakawa T, Shoji S, Go JS (2009) Size-selective separation of micro beads by utilizing secondary flow in a curved rectangular microchannel. Lab Chip 9:87–90

    Article  Google Scholar 

  • Yue P, Dooley J, Feng JJ (2008) A general criterion for viscoelastic secondary flow in pipes of noncircular cross section. J Rheol (1978-present) 52:315–332

    Article  Google Scholar 

  • Zhang J, Li M, Li W, Alici G (2013) Inertial focusing in a straight channel with asymmetrical expansion–contraction cavity arrays using two secondary flows. J Micromech Microeng 23:085023

    Article  Google Scholar 

  • Zimmerman W, Rees J, Craven T (2006) Rheometry of non-Newtonian electrokinetic flow in a microchannel T-junction. Microfluid Nanofluid 2:481–492

    Article  Google Scholar 

Download references

Acknowledgments

The use of a high-speed computer is indispensable in connection with performing the present numerical analysis. Our computations were performed by HPC Center of Sharif University of Technology which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Saidi.

Appendix

Appendix

  • The coefficients \(C_{i}\) s in Eq. (30) are given as:

    $$C_{1} = - \text{Re} \frac{{\partial \bar{\varOmega }}}{{\partial \bar{y}}},\quad C_{2} = \text{Re} \frac{{\partial \bar{\varOmega }}}{{\partial \bar{x}}}$$
    (33)
    $$\begin{aligned} C_{3} & = \left[ {1 - \frac{{{\text{Wi}}_{\kappa } }}{2K}\left( {\xi \bar{\tau }_{yy} + \left( {\xi - 2} \right)\bar{\tau }_{xx} } \right)} \right]\left[ {\frac{{\partial^{2} \varLambda_{3} }}{{\partial \bar{x}^{2} }} - \frac{{\partial^{2} \varLambda_{3} }}{{\partial \bar{y}^{2} }}} \right] + \frac{{{\text{Wi}}_{\kappa } }}{K}\left\{ {\frac{{\partial^{2} \bar{\tau }_{yx} }}{{\partial \bar{x}\partial \bar{y}}}(\xi \varLambda_{1} + (2 - \xi )\varLambda_{2} )} \right. \\ & \quad + \bar{\tau }_{xy} \left[ {\xi \frac{{\partial^{2} \varLambda_{1} }}{{\partial \bar{x}\partial \bar{y}}} + \left( {2 - \xi } \right)\frac{{\partial^{2} \varLambda_{2} }}{{\partial \bar{x}\partial \bar{y}}}} \right] + \frac{{\varLambda_{3} }}{2}\left[ {\xi \frac{{\partial^{2} \bar{\tau }_{yy} }}{{\partial \bar{y}^{2} }} + \left( {2 - \xi } \right)\frac{{\partial^{2} \bar{\tau }_{xx} }}{{\partial \bar{x}^{2} }}} \right]\left. { - \frac{{\varLambda_{3} }}{2}\left[ {\xi \frac{{\partial^{2} \bar{\tau }_{yy} }}{{\partial \bar{x}^{2} }} + \left( {2 - \xi } \right)\frac{{\partial^{2} \bar{\tau }_{xx} }}{{\partial \bar{y}^{2} }}} \right]} \right\} \\ \end{aligned}$$
    (34)
    $$\begin{aligned} C_{4} & = \left[ {1 - \frac{{{\text{Wi}}_{\kappa } }}{2K}\left( {\xi \bar{\tau }_{xx} + (\xi - 2)\bar{\tau }_{yy} } \right)} \right]\left[ {\frac{{\partial^{2} \varLambda_{3} }}{{\partial \bar{y}^{2} }} - \frac{{\partial^{2} \varLambda_{3} }}{{\partial \bar{x}^{2} }}} \right] + \frac{{{\text{Wi}}_{\kappa } }}{K}\left\{ {\frac{{\partial^{2} \bar{\tau }_{yx} }}{{\partial \bar{x}\partial \bar{y}}}\left( {\xi \varLambda_{2} + (2 - \xi) \varLambda_{1} } \right)} \right. \\ & \quad + \bar{\tau }_{xy} \left[ {\xi \frac{{\partial^{2} \varLambda_{2} }}{{\partial \bar{x}\partial \bar{y}}} + (2 - \xi )\frac{{\partial^{2} \varLambda_{1} }}{{\partial \bar{x}\partial \bar{y}}}} \right] + \frac{{\varLambda_{3} }}{2}\left[ {\xi \frac{{\partial^{2} \bar{\tau }_{xx} }}{{\partial \bar{x}^{2} }} + (2 - \xi )\frac{{\partial^{2} \bar{\tau }_{yy} }}{{\partial \bar{y}^{2} }}} \right]\left. { - \frac{{\varLambda_{3} }}{2}\left[ {\xi \frac{{\partial^{2} \bar{\tau }_{xx} }}{{\partial \bar{y}^{2} }} + (2 - \xi )\frac{{\partial^{2} \bar{\tau }_{yy} }}{{\partial \bar{x}^{2} }}} \right]} \right\} \\ \end{aligned}$$
    (35)
    $$C_{5} = 2\frac{{\partial^{2} \varLambda_{1} }}{{\partial \bar{x}\partial \bar{y}}} + 2\frac{{\partial^{2} \varLambda_{2} }}{{\partial \bar{x}\partial \bar{y}}}$$
    (36)
    $$C_{6} = \left[ {1 - \frac{{{\text{Wi}}_{\kappa } }}{2K}(\xi \bar{\tau }_{yy} + (\xi - 2)\bar{\tau }_{xx} )} \right]\varLambda_{3}$$
    (37)
    $$C_{7} = \left[ {1 - \frac{{{\text{Wi}}_{\kappa } }}{2K}\left( {\xi \bar{\tau }_{xx} + (\xi - 2)\bar{\tau }_{yy} } \right)} \right]\varLambda_{3}$$
    (38)
    $$C_{8} = 2(\varLambda_{1} + \varLambda_{2} ) - 2\left[ {1 - \frac{{{\text{Wi}}_{\kappa } }}{2K}\left( {\bar{\tau }_{xx} + \bar{\tau }_{yy} } \right)(\xi - 1)} \right]\varLambda_{3}$$
    (39)
    $$C_{9} = \frac{{{\text{Wi}}_{\kappa } }}{K}\bar{\tau }_{xy} \left( {\xi \varLambda_{1} + (2 - \xi )\varLambda_{2} } \right)$$
    (40)
    $$C_{10} = \frac{{{\text{Wi}}_{\kappa } }}{K}\bar{\tau }_{xy} \left( {\xi \varLambda_{2} + (2 - \xi )\varLambda_{1} } \right)$$
    (41)
    $$C_{11} = \frac{{\partial^{2} I_{1} }}{{\partial \bar{x}\partial \bar{y}}} - \frac{{\partial^{2} I_{2} }}{{\partial \bar{x}\partial \bar{y}}} - \frac{{\partial^{2} I_{3} }}{{\partial \bar{y}^{2} }} + \frac{{\partial^{2} I_{3} }}{{\partial \bar{x}^{2} }}$$
    (42)
  • The coefficients \(F_{i}\) s in Eq. (31) are given as:

    $$\begin{aligned} F_{1} & = - {\rm{Re}}\frac{{\partial \bar{\varphi }}}{{\partial \bar{y}}} + \frac{{{\text{Wi}}_{\kappa } }}{2K}\left[ {\varLambda_{4} \left( {\frac{{\partial \bar{\tau }_{xx} }}{{\partial \bar{x}}}(2 - \xi ) - \frac{{\partial \bar{\tau }_{zz} }}{{\partial \bar{x}}}\xi } \right) + \frac{{\partial \varLambda_{5} }}{{\partial \bar{y}}}\bar{\tau }_{xy} (2 - \xi ) + \varLambda_{5} \frac{{\partial \bar{\tau }_{xy} }}{{\partial \bar{y}}}(2 - \xi )} \right] \\ & \quad + \frac{{\partial \varLambda_{4} }}{{\partial \bar{x}}}\left[ {1 - \frac{{{\text{Wi}}_{\kappa } }}{2K}\left( {\bar{\tau }_{xx} (\xi - 2) + \bar{\tau }_{zz} \xi } \right)} \right] \\ \end{aligned}$$
    (43)
    $$\begin{aligned} F_{2} & = {\rm{Re}}\frac{{\partial \bar{\varphi }}}{{\partial \bar{x}}} + \frac{{{\text{Wi}}_{\kappa } }}{2K}\left[ {\varLambda_{5} \left( {\frac{{\partial \bar{\tau }_{yy} }}{{\partial \bar{y}}}(2 - \xi ) - \frac{{\partial \bar{\tau }_{zz} }}{{\partial \bar{y}}}\xi } \right) + \frac{{\partial \varLambda_{4} }}{{\partial \bar{x}}}\bar{\tau }_{xy} (2 - \xi ) + \varLambda_{4} \frac{{\partial \bar{\tau }_{xy} }}{{\partial \bar{x}}}(2 - \xi )} \right] \\ & \quad + \frac{{\partial \varLambda_{5} }}{{\partial \bar{y}}}\left[ {1 - \frac{{{\text{Wi}}_{\kappa } }}{2K}\left( {\bar{\tau }_{yy} (\xi - 2) + \bar{\tau }_{zz} \xi } \right)} \right] \\ \end{aligned}$$
    (44)
    $$F_{3} = \varLambda_{4} \left[ {1 - \frac{{{\text{Wi}}_{\kappa } }}{2K}\left( {\bar{\tau }_{xx} (\xi - 2) + \bar{\tau }_{zz} \xi } \right)} \right]$$
    (45)
    $$F_{4} = \varLambda_{5} \left[ {1 - \frac{{{\text{Wi}}_{\kappa } }}{2K}\left( {\bar{\tau }_{yy} (\xi - 2) + \bar{\tau }_{zz} \xi } \right)} \right]$$
    (46)
    $$F_{5} = \frac{{{\text{Wi}}_{\kappa } }}{2K}\bar{\tau }_{xy} (2 - \xi )(\varLambda_{4} + \varLambda_{5} )$$
    (47)
    $$F_{6} = - \varGamma + \frac{{\partial I_{4} }}{{\partial \bar{x}}} + \frac{{\partial I_{5} }}{{\partial \bar{y}}} + \frac{{K^{2} }}{{\bar{\psi }_{0} }}\sinh \bar{\psi }$$
    (48)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reshadi, M., Saidi, M.H., Firoozabadi, B. et al. Electrokinetic and aspect ratio effects on secondary flow of viscoelastic fluids in rectangular microchannels. Microfluid Nanofluid 20, 117 (2016). https://doi.org/10.1007/s10404-016-1780-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-016-1780-8

Keywords

Navigation